
EUROGRAPHICS 2019/ P. Cignoni and E. Miguel Short Paper

GPU Smoke Simulation on Compressed DCT Space

D. Ishida1, R. Ando2, and S. Morishima1

1Waseda University 2 National Institute of Informatics

Abstract
This paper presents a novel GPU-based algorithm for smoke animation. Our primary contribution is the use of Discrete Cosine
Transform (DCT) compressed space for efficient simulation. We show that our method runs an order of magnitude faster than
a CPU implementation while retaining visual details with a smaller memory usage. The key component of our method is an
on-the-fly compression and expansion of velocity, pressure and density fields. Whenever these physical quantities are requested
during a simulation, we perform data expansion and compression only where necessary in a loop. As a consequence, our
simulation allows us to simulate a large domain without actually allocating full memory space for it. We show that albeit our
method comes with some extra cost for DCT manipulations, such cost can be minimized with the aid of a devised shared memory
usage.

CCS Concepts
• Computing methodologies → Physical simulation; Graphics processors;

1. Introduction

Smoke simulation has been the mainstream for simulation of fluid
for a couple of decades, and yet it still remains the long-standing
problem due to the hefty memory consumption and a long duration
of run-time. It is worth noting that smoke is relatively blurry in
terms of flow and density field, unlike sharp interfaces of liquid.
This suggests that smoke can be efficiently encoded with the basis
functions that are spatially smooth. We exploit this property and
propose a new fluid simulation method where physical quantities
such as pressure, density and velocity are all represented by the
linear combination of DCT basis functions.

Although the choice of DCT seems reasonable, in order to fur-
ther utilize the nature of DCT, we show that only using 1/8 ba-
sis functions (essentially, clamping high-frequency bands) allows
us to preserve visual details while reducing the actual memory
storage needed. This provides us with a potential to simulate a
large-scale domain that is not possible with a full smoke simula-
tion without DCT due to limited GPU memory resources. In our
approach, we follow the traditional splitting approach for solving
smoke [Sta99, FSJ01]. The only difference from the previous ap-
proaches is the way the loop is handled. More specifically, when
looping over cells of a physical quantity, we choose to loop per
DCT block. When looping over a DCT block, we temporarily ex-
pand the block from the DCT space to the full space and perform
a manipulation (e.g., the Laplacian operation) over the cells within
the block. Once the manipulation is done, we compress the block
back to the DCT space again. This way, we only need to com-
press/uncompress one block at a time, and thereby we enable small

memory footprints for all the steps in the simulation. Overall, our
contribution is summarized as follows.

• DCT-based smoke simulation on the GPU that runs an order of
magnitude faster than the CPU implementation without DCT.

• On-the-fly compression and expansion of the DCT space.
• Reduced DCT basis functions that retain visual details and con-

sume less memory.
• Our method requires a small incremental effort to implement on

top of an existing fluid simulation framework.

1.1. Problem Statement

We find that modern GPUs offer high performance in parallel pro-
cessing, which is suitable for fluid simulation. On the other hand,
GPUs often come with limited resources in memory, which hinders
memory intensive simulations. Our method is the first to provide
a system that enables a GPU simulation of smoke that runs on a
compressed memory space. More specifically, we demonstrate that
our approach runs more than a magnitude faster than a CPU imple-
mentation without DCT while the memory consumption is greatly
reduced by the use of our novel DCT compression.

2. Related Work

The field of smoke simulation has flourished since the seminal work
of Stam [Sta99]. Later, the staggered grid was popularized by Fed-
kiew et al. [FSJ01] for discretizing the velocity field. We refer inter-
ested readers to the book by Bridson [Bri08] for a comprehensive
overview of fluid simulation. Since the literature of efficient smoke
simulation is vast, we only summarize relevant works below.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

D. Ishida & R. Ando & S. Morishima / GPU Smoke Simulation on Compressed DCT Space

�[2,2]

�[2,2] �[2,2]

�[2,2]

Compress back to DCT space

Block

(d)

�[2,2]

�[2,2] �[2,2]

!2,1 !4,1

!1,4 !4,4

!1,2

!1,1

Update physical quantities

Block

(c)

�[2,2]

�[2,2] �[2,2]

!2,1 !4,1

!1,4 !4,4

!1,2

!1,1

Uncompress data

Block

(b)

Block
1

Block
2

Block
3

Block
4

Block
 −1

Block

Block
 +1

Block
 +2

Identify blocks to uncompress

(a)

Figure 1: Our block-wise loop overview. We first identify which DCT blocks to uncompress into the shared memory (a). Next, we uncompress
the blocks (b) and manipulate cells within the blocks (c). After the manipulation is done, we compress the blocks back to the DCT space (d).
We do this in an "out-of-core" fashion; we never uncompress all the blocks at once.

Adaptive simulation This group includes methods that make
use of octree grid structure [LGF04], Voronoi cells [BBB10,
dGWH∗15] and tetrahedral meshes [ATW13,BXH10]. These adap-
tive methods can reduce both the total memory consumption and
the computational overhead through the use of adaptive grids where
the cell size spatially varies according to a sizing function. While
adaptive methods may be tempting, it should be noted that these
methods come with an extra cost for mesh generation. It should be
also noted that unstructured grids often make discretization com-
plex. Our method does not introduce such complexity.

Reduced space This group includes methods that make use
of model reduction [TLP06, WST09], eigen vector analy-
sis [DWLF12] and sub-space simulation [KD13]. Reduced space
algorithms start by constructing sub-space basis functions. Re-
duced space algorithms drastically reduce the degrees of freedom;
and thus enable real time simulations. Our method likewise uses
reduced space, but a key difference is that our method does not di-
rectly compute interactions between the degrees of freedom held
by the DCT coefficients. Instead our method simply uses DCT as
a data compression mechanism during simulation. Our method is
another way of reducing the simulation space which may offer dif-
ferent characteristics compared to the above cited methods. A com-
prehensive analysis is left for future work.

3. Our Method

3.1. Overview

We use DCT to realize compression of physical quantities:

X [k] =
n−1

∑
i=0

xi cos
(

π

2n
(2i+1)k

)
, (1)

where X [k] is the k-th coefficient in the DCT space and xi is the i-th
data within a block. We extend this idea to three dimensions to re-
alize compression on 3D space. Uncompression of the DCT space
is done in a similar fashion. Unless noted, we follow the method
of Fedkiew et al. [FSJ01] to proceed our simulation, which con-
sists of advection, pressure projection, and the external force steps

along with the staggered discretization. Since the only difference
from a regular simulation is how we loop over physical quantities,
we focus our discussion of our method around it.

3.2. Preprocessing

To accommodate all the simulation data on a GPU, we first make
sure that the total memory size fits within the available GPU mem-
ory storage. For this purpose, we partition the simulation domain
into rectangular blocks. In principle, we prefer larger block sizes
since the maximal achievable compression ratio increases this way.
Since the maximal number of assignable threads per "work block"
is 1024 on CUDA, we choose 8×8×8 grids as our block size. Fi-
nally, we only carry 1/2 DCT coefficients for each axis to achieve
1/8 compression rate in the end.

After we determine the size of DCT blocks, initial simulation
data are arranged according to the block-wise index order and they
are encoded to the reduced DCT space. Once the arrangements and
the encoding are done, the initial velocity and the density field are
transferred to the global memory on the GPU.

3.3. Simulation Loop

Once the initial data transfer is completed, we enter a simulation
loop that consists of the following four steps: (a) identify the max-
imal number of blocks that can be uncompressed within the shared
memory on the GPU; (b) uncompress the data onto the shared
memory for calculation; (c) update the physical quantities on the
shared memory; (d) compress the updated data back to the DCT
space and store it to the global memory. We illustrate the proce-
dure of our block-wise loop in Figure 1. We emphasize that we
do not uncompress all the simulation data simultaneously; we only
uncompress a few number of blocks at the same time so that we
never need to allocate the full memory space for simulation. In the
following, we use the word "activate" to mean the identification of
which block to uncompress into the shared memory.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

D. Ishida & R. Ando & S. Morishima / GPU Smoke Simulation on Compressed DCT Space

3.3.1. Activating Blocks

The key idea of our method is to perform updates of a physi-
cal quantities per DCT block, while performing block-wise data
uncompression and compression as needed. Recall that blocks to
be activated are decided depending on the shared memory ca-
pacity on the GPU. For clarification, we illustrate an example
of a 256× 256× 256 resolution. First, we partition the domain
into 32× 32× 32 blocks, each having an 8x8x8 grid. Next, sup-
pose that a GPU can only allocate a shared memory of up to a
128× 128× 128 resolution, then the number of blocks to be ac-
tivated will be 16× 16× 16 because it is the maximal number of
grids to uncompress within the shared memory. When all the calcu-
lations in the active blocks are done, we compress the blocks back
to the DCT space and then move on to the next set of DCT blocks.

A careful attention must be paid to cells on block boundaries.
For example, when updating the velocity values on faces with the
pressure gradient, pressure samples outside the block are needed.
Performing the semi-Lagrangian advection also encounters similar
situations where a back-traced location falls outside the block. We
address this problem in the following way: when a cell outside a
uncompressed block is requested, we perform an on-the-fly uncom-
pression for the cell. The overhead of this operation is relatively
small because such cases only arise on elements near boundaries.

3.3.2. Pressure Projection

We choose the conjugate gradient (CG) method for the pressure
solver. For a linear equation Ax = b, the CG method only re-
quires the knowledge of how to apply the matrix A on the vector
x to complete an iteration. To perform CG iterations on our DCT-
compressed pressure field, we perform a matrix-free vector multi-
plication on a subset of the pressure vector x corresponding to each
block obtained by uncompression. A block is uncompressed when
a matrix multiplication loop enters the block and compressed again
when the loop leaves the block. This way, we can complete a full
step of the CG without uncompressing the whole vector x.

4. Results

We performed and measured a series of benchmarks, including ac-
tual runtime and memory footprints during simulation. We also
compared our method with one without using our DCT compres-
sion. We implemented our method with CUDA 10.0 and ran on an
Intel Core i7 6900K CPU and an NVIDIA GTX 1060.

As can be seen in Table 1, our method achieves more than an
order of magnitude speedup than the CPU simulation without our
DCT compression. Also, we point out that when compared to a
GPU simulation without our DCT compression, the overhead of our
DCT compression is acceptably small. We highlight that in terms
of the whole simulation time, our method greatly benefits from par-
allel calculation on the GPU with a significantly reduced memory
footprint. Figure 2 compares a smoke simulation without our DCT
compression and a simulation using our memory compression at
the rates of 1/8 and 1/16. It qualitatively shows that our method
with 1/8 ratio well retains the visual details despite compression.

It may appear contradictory that the memory consumption in Ta-
ble 1 is actually not 1/8. This is because we chose to uncompress

multiple DCT blocks to fill all the shared memory to maximize
performance (minimizing the occurrence of the on-the-fly uncom-
pression of elements near DCT block boundaries). Therefore, at the
end of a simulation loop, our memory consumption will be 1/8. If
the amount of an available shared memory was smaller, our peak
memory consumption would approach 1/8 at the cost of a slightly
poor cache hit rate.

5. Discussion

Convergence on Pressure Solver Our pressure solver does not
converge at a desired precision (e.g., relative residual of 10−4) due
to the error introduced by our DCT compression. Hence, we set the
maximum number of iterations for the CG method to the average
of CG iterations needed by a regular simulation without using our
DCT compression. In practice, we found this technique does not
introduce apparent visual artifacts.

Loss of High Frequency Detail Since our method clamps high
frequency DCT bands, small vorticities may be filtered out during
compression. Nevertheless, our method may be more efficient than
a simulation of low resolutions in the sense that our method is ca-
pable of expressing a field of high resolutions using multiple basis
functions. We demonstrate an example of a two dimensional com-
parison in the supplemental video.

Higher Compression Rates We chose a uniform 1/8 compres-
sion rate for obtaining good visual quality. More aggressive com-
pression rates can introduce severe visual artifacts as shown in both
Figure 2 and the supplemental video. An interesting avenue for fu-
ture work would be to make our algorithm adaptive such that unim-
portant areas get compressed more aggressively.

Mosquito Noise Like a highly compressed JPEG image, when an
initial density field contains sharp interfaces, our method can ex-
hibit so-called "mosquito noise" near boundaries. Although such
noise does not persist as simulation advances since the density field
gets diffused by advection, one may need to carefully distribute the
initial density filed to prevent the artifacts.

6. Conclusions

This paper proposed a novel GPU smoke simulation on a com-
pressed DCT space. Building on the standard smoke simulation
framework, we devised the order of loops over cells of physical
quantities. Particularly, we chose an "out-of-core" block-wise com-
pression/uncompression which allows us to segregate our computa-
tion per block. To minimize performance overhead, we chose to un-
compress blocks into shared memory. As a consequence, we were
able to achieve an order of magnitude faster performance than a
CPU implementation without DCT while the memory consumption
is reduced down to 1/8. In our future work, we would like to ap-
ply our DCT-based compression approach to develop a multi-grid
pressure solver to further speed up the simulation. We also would
like to adaptively select the number of DCT coefficients to achieve
a more memory efficient simulation.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

D. Ishida & R. Ando & S. Morishima / GPU Smoke Simulation on Compressed DCT Space

Time [sec] Memory [MB]
CPU Simulation 310.8 3523

GPU Simulation w/o our method 16.7 2051
GPU Simulation w/ our method (1/8 compression) 27.6 933

GPU Simulation w/ our method (1/64 compression) 18.2 931

Table 1: The benchmark of our method with and without the DCT compression shown in Figure 2. Note that the difference in memory between
the CPU simulation and the GPU simulation without the DCT comes from our implementation differences (e.g., difference in a linear solver
library).

Figure 2: Smoke simulation without our DCT compression (left). Our method with a 1/8 DCT compression (middle). Our method with a
1/64 DCT compression (right). Resolution: 256×512×256.

References

[ATW13] ANDO R., THÜREY N., WOJTAN C.: Highly adaptive liquid
simulations on tetrahedral meshes. ACM Trans. Graph. 32, 4 (July 2013),
103:1–103:10. 2

[BBB10] BROCHU T., BATTY C., BRIDSON R.: Matching fluid simula-
tion elements to surface geometry and topology. ACM Trans. Graph. 29,
4 (2010), 1–9. 2

[Bri08] BRIDSON R.: Fluid Simulation for Computer Graphics. A K
Peters/CRC Press, Sept. 2008. 1

[BXH10] BATTY C., XENOS S., HOUSTON B.: Tetrahedral embedded
boundary methods for accurate and flexible adaptive fluids. In Proceed-
ings of Eurographics (2010). 2

[dGWH∗15] DE GOES F., WALLEZ C., HUANG J., PAVLOV D., DES-
BRUN M.: Power particles: An incompressible fluid solver based on
power diagrams. ACM Trans. Graph. 34, 4 (July 2015), 50:1–50:11. 2

[DWLF12] DE WITT T., LESSIG C., FIUME E.: Fluid simulation using
laplacian eigenfunctions. ACM Trans. Graph. 31, 1 (Feb. 2012), 10:1–
10:11. 2

[FSJ01] FEDKIW R., STAM J., JENSEN H. W.: Visual simulation of
smoke. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (2001), SIGGRAPH ’01, pp. 15–
22. 1, 2

[KD13] KIM T., DELANEY J.: Subspace fluid re-simulation. ACM Trans.
Graph. 32, 4 (July 2013), 62:1–62:9. 2

[LGF04] LOSASSO F., GIBOU F., FEDKIW R.: Simulating water and
smoke with an octree data structure. In ACM SIGGRAPH 2004 Papers
(2004), SIGGRAPH ’04, pp. 457–462. 2

[Sta99] STAM J.: Stable fluids. In Proceedings of the 26th Annual Con-
ference on Computer Graphics and Interactive Techniques (1999), SIG-
GRAPH ’99, pp. 121–128. 1

[TLP06] TREUILLE A., LEWIS A., POPOVIĆ Z.: Model reduction for
real-time fluids. In ACM SIGGRAPH 2006 Papers (2006), SIGGRAPH
’06, pp. 826–834. 2

[WST09] WICKE M., STANTON M., TREUILLE A.: Modular bases for
fluid dynamics. ACM Trans. Graph. 28, 3 (July 2009), 39:1–39:8. 2

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

